Category Archives: Publications

Graphene on Nanoscale-Thick Au Films: Implications for Anticorrosion in Smart Wearable Electronics

Figure 1

Congratulate Steve for publishing on ACS Appl. Nano Mater. !

https://pubs.acs.org/doi/10.1021/acsanm.2c00401

Article PDF

Abstract

Gold is normally considered inert to chemical reaction. Nevertheless, as a common electrode material, it would suffer from corrosion when exposed to certain solutions such as sweat and body fluids. Here, we report low-temperature plasma-enhanced chemical vapor deposition (PECVD) of graphene on gold and demonstrate its feasibility for anticorrosion application. The effects of hydrogen-to-methane ratio and the underlying gold substrate on the graphene growth are investigated, and the growth mechanism of PECVD graphene on gold is proposed. When immersed in an oxygenated saline solution, the PECVD-grown graphene-covered gold surface is found to remain intact after an acceleration soaking test at 90 °C for 24 h, which is in contrast to the degradation of bare gold surface subject to the same test. Our findings suggest that consumer/medical wearables and implantable devices with exposed gold can benefit from the protection of a direct, low-temperature PECVD-grown graphene layer for anticorrosion, thereby prolonging the efficacy and reliability of gold electrode-based biosensors.

Control of trion-to-exciton conversion in monolayer WS2 by orbital angular momentum of light

Check out a new paper just published on Science Advances:  https://www.science.org/doi/10.1126/sciadv.abm0100

Article PDF

Supporting Materials

Abstract:

Controlling the density of exciton and trion quasiparticles in monolayer two-dimensional (2D) materials at room temperature by nondestructive techniques is highly desired for the development of future optoelectronic devices. Here, the effects of different orbital angular momentum (OAM) lights on monolayer tungsten disulfide at both room temperature and low temperatures are investigated, which reveal simultaneously enhanced exciton intensity and suppressed trion intensity in the photoluminescence spectra with increasing topological charge of the OAM light. In addition, the trion-to-exciton conversion efficiency is found to increase rapidly with the OAM light at low laser power and decrease with increasing power. Moreover, the trion binding energy and the concentration of unbound electrons are estimated, which shed light on how these quantities depend on OAM. A phenomenological model is proposed to account for the experimental data. These findings pave a way toward manipulating the exciton emission in 2D materials with OAM light for optoelectronic applications.

 

Electrically Tunable and Dramatically Enhanced Valley-Polarized Emission of Monolayer WS2 at Room Temperature with Plasmonic Archimedes Spiral Nanostructures

Congratulate  Wei-Hsiang for publishing a new paper on Advanced Materials!

Abstract: Monolayer transition metal dichalcogenides (TMDs) have intrinsic valley degrees of freedom, making them appealing for exploiting valleytronic applications in information storage and processing. WS2 monolayer possesses two inequivalent valleys in the Brillouin zone, each valley coupling selectively with a circular polarization of light. The degree of valley polarization (DVP) under the excitation of circularly polarized light (CPL) is a parameter that determines the purity of valley polarized photoluminescence (PL) of monolayer WS2. Here, we report efficient tailoring of valley-polarized PL from monolayer WS2 at room temperature (RT) through surface plasmon-exciton interactions with plasmonic Archimedes spiral (PAS) nanostructures. The DVP of WS2 at RT can be enhanced from < 5% to 40% and 50% by using 2 turns (2T) and 4 turns (4T) of PAS, respectively. Further enhancement and control of excitonic valley polarization is demonstrated by electrostatically doping monolayer WS2. For CPL on WS2-2TPAS heterostructures, the 40% valley polarization is enhanced to 70% by modulating the carrier doping via a backgate, which may be attributed to the screening of momentum-dependent long-range electron-hole exchange interactions. The manifestation of electrical tunibility in the valley-polarized emission from WS2-PAS heterostructures presents a new strategy towards harnessing valley excitons for application in ultrathin valleytronic devices.

https://onlinelibrary.wiley.com/doi/10.1002/adma.202104863

Polymer-Compatible Low-Temperature Plasma-Enhanced Chemical Vapor Deposition of Graphene on Electroplated Cu for Flexible Hybrid Electronics

Congratulate Steve for publishing a new paper on ACS Applied Materials and Interfaces!

 

Abstract:

Flexible hybrid electronics and fan-out redistribution layers rely on electroplating Cu on polymers. In this work, direct low-temperature plasma-enhanced chemical vapor deposition (PECVD) of graphene on electroplated Cu over polyimide substrates is demonstrated, and the deposition of graphene is found to passivate and strengthen the electroplated Cu circuit. The effect of the H 2 /CH 4 ratio on the PECVD graphene growth is also investigated, which is shown to affect not only the quality of graphene but also
the durability of Cu. 100,000 cycles of folding with a bending radius of 2.5 mm and the corresponding resistance tests are carried out, revealing that Cu circuits covered by graphene grown with a higher H 2 /CH 4 ratio can sustain many more bending cycles. Additionally, graphene coverage is shown to suppress the formation of copper oxides in ambient environment for at least 8 weeks
after the PECVD process.

https://pubs.acs.org/doi/full/10.1021/acsami.1c11510

Evidences for pressure-induced two-phase superconductivity and mixed structures of NiTe2 and NiTe in type-II Dirac semimetal NiTe2-x (x = 0.38 ± 0.09) single crystals

Bulk NiTe2 is a type-II Dirac semimetal with non-trivial Berry phases associated with the Dirac fermions. Theory suggests that monolayer NiTe2 is a two-gap superconductor, whereas experimental investigation of bulk NiTe1.98 for pressures (P) up to 71.2 GPa do not reveal any superconductivity. Here we report experimental evidences for pressure-induced two-phase superconductivity as well as mixed structures of NiTe2 and NiTe in Te-deficient NiTe2-x (x = 0.38 ± 0.09) single crystals. Hole-dominant multi-band superconductivity with the P3¯m1 hexagonal-symmetry structure of NiTe2 appears at P ≥ 0.5 GPa, whereas electron-dominant single-band superconductivity with the P2/m monoclinic-symmetry structure of NiTe emerges at 14.5 GPa < P < 18.4 GPa. The coexistence of hexagonal and monoclinic structures and two-phase superconductivity is accompanied by a zero Hall coefficient up to ∼ 40 GPa, and the second superconducting phase prevails above 40 GPa, reaching a maximum Tc = 7.8 K and persisting up to 52.8 GPa. Our findings suggest the critical role of Te-vacancies in the occurrence of superconductivity and potentially nontrivial topological properties in NiTe2-x.

https://authors.elsevier.com/a/1cTXE926gyzxH0

Single-Step Direct Growth of Graphene on Cu Ink towards Flexible Hybrid Electronic Applications by Plasma-Enhanced Chemical Vapor Deposition

Highly customized and free-formed products in flexible hybrid electronics (FHE) require direct
pattern creation such as inkjet printing (IJP) to accelerate the product development. In this work,
we demonstrate direct growth of graphene on Cu ink deposited on polyimide (PI) by means of
plasma enhanced chemical vapor deposition (PECVD), which provides simultaneous reduction,
sintering and passivation of the Cu ink and further reduces its resistivity. We investigate the
PECVD growth conditions for optimizing the graphene quality on Cu ink, and find that the defect
characteristics of graphene are sensitive to the H2/CH4 ratio at higher total gas pressure during the
growth. The morphology of Cu ink after the PECVD process and the dependence of graphene
quality on the H2/CH4 ratio may be attributed to the difference in the corresponding electron
temperature. This study therefore paves a new pathway towards efficient growth of high-quality
graphene on Cu ink for applications to flexible electronics and Internet of Things (IoT).

https://yehgroup.caltech.edu/files/2021/02/ACS-AMI_2021_Graphene-on-Cu-Ink.pdf

Direct large-area growth of graphene on silicon for potential ultra-low-friction applications and silicon-based technologies

Deposition of layers of graphene on silicon has the potential for a wide range of optoelectronic and mechanical applications. However, direct growth of graphene on silicon has been difficult due to the inert, oxidized silicon surfaces. Transferring graphene from metallic growth substrates to silicon is not a good solution either, because most transfer methods involve multiple steps that often lead to polymer residues or degradation of sample quality. Here we report a single-step method for large-area direct growth of continuous horizontal graphene sheets and vertical graphene nano-walls on silicon substrates by plasma-enhanced chemical vapor deposition (PECVD) without active heating. Comprehensive studies utilizing Raman spectroscopy, x-ray/ultraviolet photoelectron spectroscopy (XPS/UPS), atomic force microscopy (AFM), scanning electron microscopy (SEM) and optical transmission are carried out to characterize the quality and properties of these samples. Data gathered by the residual gas analyzer (RGA) during the growth process further provide information about the synthesis mechanism. Additionally, ultra-low friction (with a frictional coefficient ~0.015) on multilayer graphene-covered silicon surface is achieved, which is approaching the superlubricity limit (for frictional coefficients <0.01). Our growth method therefore opens up a new pathway towards scalable and direct integration of graphene into silicon technology for potential applications ranging from structural superlubricity to nanoelectronics, optoelectronics, and even the next-generation lithium-ion batteries.

https://doi.org/10.1088/1361-6528/ab9045

Nanoscale strain engineering of giant pseudo-magnetic fields, valley polarization, and topological channels in graphene

We report an approach to manipulating the topological states in monolayer graphene via nanoscale strain engineering at room temperature. By placing strain-free monolayer graphene on architected nanostructures to induce global inversion symmetry breaking, we demonstrate the development of giant pseudo-magnetic fields (up to ~800 T), valley polarization, and periodic one-dimensional topological channels for protected propagation of chiral modes in strained graphene, thus paving a pathway toward scalable graphene-based valleytronics.

https://advances.sciencemag.org/content/6/19/eaat9488.full

Direct growth of mm-size twisted bilayer graphene by plasma-enhanced chemical vapor deposition

Plasma enhanced chemical vapor deposition (PECVD) techniques have been shown to be an efficient method to achieve single-step synthesis of high-quality monolayer graphene (MLG) without the need of active heating. Here we report PECVD-growth of single-crystalline hexagonal bilayer graphene (BLG) flakes and mm-size BLG films with the interlayer twist angle controlled by the growth parameters. The twist angle has been determined by three experimental approaches, including direct measurement of the relative orientation of crystalline edges between two stacked monolayers by scanning electron microscopy, analysis of the twist angle-dependent Raman spectral characteristics, and measurement of the Moiré period with scanning tunneling microscopy. In mm-sized twisted BLG (tBLG) films, the average twist angle can be controlled from 0° to approximately 20°, and the angular spread for a given growth condition can be limited to < 7°. Different work functions between MLG and BLG have been verified by the Kelvin probe force microscopy and ultraviolet photoelectron spectroscopy. Electrical measurements of back-gated field-effect-transistor devices based on small-angle tBLG samples revealed high-quality electric characteristics at 300 K and insulating temperature dependence down to 100 K. This controlled PECVD-growth of tBLG thus provides an efficient approach to investigate the effect of varying Moiré potentials on tBLG.

https://www.sciencedirect.com/science/article/pii/S0008622319309601