Skip to content

Vertically-aligned graphene nanowalls grown via plasma-enhanced chemical vapor deposition as a binder-free cathode in Li–O2 batteries

Vertically-aligned graphene nanowalls grown via plasma-enhanced chemical vapor deposition as a binder-free cathode in Li–O2 batteries Chih-Pin Han, Vediyappan Veeramani, Chen-Chih Hsu, Anirudha Jena, Ho Chang, Nai-Chang Yeh, Shu-Fen Hu, and Ru-Shi Liu
https://doi.org/10.1088/1361-6528/aae362

In the present report, vertically-aligned graphene nanowalls are grown on Ni foam (VA-G/NF) using plasma-enhanced chemical vapor deposition method at room temperature. Optimization of the growth conditions provides graphene sheets with controlled defect sites. The unique architecture of the vertically-aligned graphene sheets allows sufficient space for the ionic movement within the sheets and hence enhancing the catalytic activity. Further modification with ruthenium nanoparticles (Ru NPs) drop-casted on VA-G/NF improves the charge overpotential for lithium–oxygen (Li–O2) battery cycles. Such reduction we believe is due to the easier passage of ions between the perpendicularly standing graphene sheets thereby providing ionic channels.